Biorthogonal Spline Type Wavelets

نویسنده

  • Tian-Xiao He
چکیده

Let φ be an orthonormal scaling function with approximation degree p−1, and let Bn be the B-spline of order n. Then, spline type scaling functions defined by f̄n = f ∗Bn (n = 1, 2, . . . ) possess higher approximation order, p+n−1, and compact support. The corresponding biorthogonal wavelet functions are also constructed. This technique is extended to the case of biorthogonal scaling function system. As an application of the method supplied in this paper, one can easily construct a sequence of pairs of biorthogonal spline type scaling functions from one pair of biorthogonal scaling functions or an orthonormal scaling function. In particular, if both the method and the lifting scheme of Sweldens (see [1]) are applied, then all pairs of biorthogonal spline type scaling functions shown in references [2] and [3] can be constructed from the Haar scaling function. c © 2004 Elsevier Science Ltd. All rights reserved. Keywords—Biorthogonal wavelets, B-splines, Spline type scaling functions, Backward-difference, Forward-difference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of compactly supported biorthogonal wavelets

This paper presents a construction of compactly supported biorthogonal spline wavelets in L2(IR ). In particular, a concrete method for the construction of bivariate compactly supported biorthogonal wavelets from box splines of increasing smoothness is provided. Several examples are given to illustrate the method. Key-Words:multivariate biorthogonal wavelets, multivariate wavelets, box splines,...

متن کامل

A new view on biorthogonal spline wavelets

The biorthogonal wavelets introduced by Cohen, Daubechies, and Feauveau contain in particular compactly supported biorthogonal spline wavelets with compactly supported duals. We present a new approach for the construction of compactly supported spline wavelets, which is entirely based on properties of splines in the time domain. We are able to characterize a large class of such wavelets which c...

متن کامل

Construction of trivariate compactly supported biorthogonal box spline wavelets

We give a formula for the duals of the masks associated with trivariate box spline functions. We show how to construct trivariate nonseparable compactly supported biorthogonal wavelets associated with box spline functions. The biorthogonal wavelets may have arbitrarily high regularities.

متن کامل

Biorthogonal Spline Wavelets on the Interval

We investigate biorthogonal spline wavelets on the interval. We give sufficient and necessary conditions for the reconstruction and decomposition matrices to be sparse. Furthermore, we give numerical estimates for the Riesz stability of such bases. §

متن کامل

Characterization of Biorthogonal Cardinal Spline Wavelet Bases

In both applications and wavelet theory, the spline wavelets are especially interesting, in part because of their simple structure. In a previous paper we proved that the function m;l is an m th order spline wavelet having an l th order spline dual wavelet. This enabled us to derive biorthogonal spline wavelet bases. In this paper we rst study the general structure of cardinal spline wavelets, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004